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USING NONLINEAR LEAST-SQUARES METHODS FOR QUANTAL RESPONSE AND
SENSITIVITY ANALYSES, MINIMUM CHI-SQUARE ESTIMATION, AND DIFFERENTIAL EQUATIONS
by

Roger H. Moore and R. Keith Zeigler

ABSTRACT

A number of special statistical and mathematical techniques re-
duce to solving equations equivelent to those required by general
least-squares procedures, In the statistical category are quan-
tal response and sensitivity analyses and minimum chi-square
estimation of parameters; in the mathematical, is the problem
of determining constants for differential equations whose solu-
tions ere relations among observeble variables, This report

contains demonstratlions of the equivalences and provides ex-

amples to which the methods were applied,

INTRODUCTION

Computational procedures in statistics, as in
many other fields, are often straightforwerd but
tedious. Modern computers, along with simplified
programming methods, make possible application and
re-evaluation of meny hitherto complicated tech-
niques, Nonlinear least-squaeres methods, often at-
tributed to Gauss, were thoroughly outlined early
in the 19th century but did not come into wide-
spread use until the middle 1950's. An early com-
puter program in this area by the authors of this
report was reported elsewhere.l

Since the program's first availebility, a
number of computer installations heve made it a
part of their libraries, and it has been used rou-
tinely by many nonprofessional progremmers as a
research tool. This broad epplication has led the
authors to consider many new uses for the program.
This report discusses some of these new aepplica-
tions and indicates how three genersl problems,

basically unreleted to least squares, can be solved
by least-squares methods.

*
QUANTAL RESPONSE AND SENSITIVITY ANALYSES

1. Background.

Quantal response and sensitivity methods are
used in many scientific fields. They are concerned
with the statisticel analysis of data obtained by
subjecting a test item to & known level of stimulus
(an insect is given a certein amount of poison, an
explosive is dropped a predetermined number of
feet) and noting whether the test item responds
(dies, explodes) to that level or does not respond
(1ives, does not explode), A series of such ex-
veriments is carried out on different test items

*Based on "Multivariate Quantal Response Analysis
Using Regression Methods," by R. K. Zeigler and

R, H. Moore, presented at the 126th Annuel Meeting
of the American Statistical Association, Los An-
geles, California, August 15 - 19, 1966.



until several levels of stimulus are encountered at
which some respond and some do not,

Perhaps the besgt-known technique is that of
probit a.nalysis.2 The “up-and-down" xnethod5 is
also widely used and has the advantage (compared
with probit anelysis) of being noniterative. These
methods are both designed to estimate parasmeters by
the method of meaximum likelihood, an idea still em-
It is ap-
propriate to mention still another estimating pro-
that is designed for small samples and
based on a stochastic process concept rather then
maximum likelihood.

Meximum likelihood equations derived for eval-
uating quantal response data can be solved by non-
linear regression formulation, and the "treatment"
to which the experimental units are subjected may
be a mixture of individuel treatments. These con-
cepts will be illustrated by five examples, three
of the univariate type and two bivariate.

ployed in feirly recent investigations.

edure,

2, Meximum Likelihood Estimation.

It is the following line of reasoning that
leads to the maximum likelihood equations., Each
test item is assumed to be randomly selected from
some larger population, It is further assumed that
each item has a level of stimulus below which it
will not respond and above which it will respond.
This level may be called the threshold of the item.
Finelly, the thresholds of the population of items
are presumed to be distributed according to a den-
sity function £(t; &) where @ is a vector of k pa-
rameters which are of interest. Thus, if a ran-
domly selected item is subjected to a level of
stimulus, say x, the probability that it will re-
spond may be written

x
Pr(t <x) = [ £(t; @) dat = F(x; Q). (1)

-0

It is common, and sometimes reasonable, to assume
that the threshold density is normal, so that

X
Pr(t <x) = [ (2 /252 0 [- %—("—;E)z]dt,
-

("
end 4 and o are the parameters to be estimated. It
is not our intent to discuss the choice of the ap-

propriste form of Eq. (1) for a particuler spplica-
tion. Probits,? normits,® and logits’ all have
their sdvocates and users.

The usual procedure leading to the likelihood
egtimates is to selact a set of levels of stimulus
Xy> Xps eeey Xys eees Koo A number of items, say
n,, are tested at the level X and Ty of them
If the probability of a& single item re-
sponding at x; is Pi(ot) = F(x,; @), then Py = ri/ni
is an estimate of Pi(a). Since the tests ere as-
sumed to be independently performed, the probabil-
ity of obtaining the m results Pys Pps eses Pys

respond,

eves Py can be expressed as

m n n, -r

i r 11

P= ] Pii(1 - P,) (2)
1m] (ri) i i ’

where it must be remembered that Pi is a function
of the parameters of the threshold density function,
The likelihood equations which must be solved

are (Bee Ref. 2, Appendix I1,)

’ m
d3lnp " ny(py - ®,) 3Py

= 0
Sad ract Pitl - PiS WJ ’

(3)
=1, 2 ...y k.

Thess equations generally are nonlinear in the pa-
rameters and are commonly solved by iterative
methods. The straight-line fitting involved in
probit, normit, and logit analysis is a device to
provide initial estimates of the parameter vector
@ and to make each iteration somewhat more palat-
able. That such methods were and are effective,
however, cannot be overlooked or overstated, A
great deal of work was expended in preparing auxil-
jary tables for use when the celculations were be-
ing performed by hand or on a conventional desk
calculator,

The variances and covariances of the maximum
likelihood estimates may be obtained in the usual
manner by inverting the metrix A whose elemsnt in
the jth row and j'th column is

8- E(a"‘ log PR ) (4)

In practice, of course, this matrix is estimated by
evaluating these second partial derivatives using




the maximum likelihood estimetes of the parameters.

3. Nonlinear Regression Estimation. i
In the formulation of the general regression

problem, it is common to assume that the deta fol-
low the model

v; = &lzg38) v ey, 1=1,2 ..., N, (5)

where the A are observed random variables, z, is a

vector of associated known mathematical va.riatj).les 3

B is a vector of unknown parameters to be estimated,
and ey is a random variable whose expected value is
Any two of the ran-

dom verisbles, say e, and e, (1* £ 1"), are as-

zero and whose variance is 0?.
sumed to have zero covariance. If there are K pa-
rameters in the vector B, they may be estimated by
minimizing the weighted sum of squares

M
2
Q- 1Z=:1 Wiy - ez 0] (6)
by solving the normel equations

oe(zy; B)
a—‘s—"::-zz [y g(zi;B)]-gang=0,

(7
3’1) 2: ceey K

for the perameters. The Gauss-Markoff theorem
states that, if g(zi, B) is lineer in B and W, =
1/01, the best linear unbiased estimate of P is ob-
tained from the solution of Egs. (7).
even when the model is nonlinear in the parameters,
it seems to be standard practice to set the weight

equal to the reciprocal of the variance.

Consequently,

The usu&l procedure for estimeting the covar-
iance matrix for the estimates of the regression
parameters iIs to invert the matrix B whose elements

are
M
. _ Z " 38(21; B) 88(215 B) ’
33 rpc il BBJ bﬁj.

(8)
353" =1, 2, ...y K.

As with the maximum likelihood covariance matrix,
the elements bj,j'
estimetes of the parameters before the matrix is

in practice are evaluated at the

inverted.
Much effort in recent years has been devoted

to obtaining improved methods of minimizing Eq. (6)
when the parameters appear nonl:l.neln'fl.y.a'9 This
effort has been fostered by dissatisfaction with
the basic Gauss linearization procedure, and it has
been stimulated by the availability of computers
which make such investigetions feasible, Most com-
puter facilities, therefore, have available non-
linear regression programs designed to solve Egs.
(7). Useful programs of this type allow W, tobe a
known function of the pearameters, so that the vel-
ues of the weights may be modified as the itera-

tions proceed.

4, Equivalence Demonstration.,

The equivalence of the likelihood equations
(3) and the normal equations (7) is made clear by
the three equivalences: [Pi(a) —'g(zi; B)],
W, = ni
i Pi(a) (1 - Pi(aﬂ .

The equivalence of the covariance matrices derives
from expressions (4) and (8), and is seen by writ-
ing
&% 10g P a
ng—a =
J 3
n 38, () 3P, (o)

M 5
E; P (@IT - P (9] aaj Baj.

+ terms involving (pi - Pi(a)). (9)

When the negative expectation of Eq. (9) is ob-
tained, the terms involving (p:L - Pi(a)) are zero
for large samples.

5. Univeriate Examples.

In the followlng exemples, reference to the
LASL program meens the computer program used ex-
tensively at the Los Alamos Scientific Laboratory
for leest-squares p:z'oblems.:L Results are reported
to the same number of figures used in the original
exsmples, even though the LASL program was required
to solve the least-squares equations to at least
seven, and sometimes eight, significent figures.
The convergence criterion in the LASL program when
operated on an IBM 7094 (which has slightly more



than eight-digit single-precision accuracy) re-
quired that the estimated corrections at the final
iteration be less than 1.0"6 of the current values
of the parameters.

Example 1. Perhaps the best known example
(because of its appearance in a ploneering text) of
probit analysis 1s concerned with the effect of a
series of concentrations of rotenone sprayed on the
chrysenthemunm aphis (Ref. 2, pp. 25 - 55). The
data ere repeated in Teble I.

Table T

Toxicity of Rotenone to Chrysanthemum Aphis

Log
Concentration Concentration

(mg/1) (xy) BTy

10,2 1.01 50 Ly
7.7 0.89 b9 k2
5.1 0.71 46 24
3.8 0.58 48 16
2.6 0. 50
0 -- k9

As is typical of this type of experiment, the
agsumption was mede that the common logarithms of
the thresholds were normelly distributed with mean,
K1, and standard deviation, o, The LASL program was
given the concentrations of Teble I and computed
the common logerithms for the remainder of the cal-
culation. The estimates reported in the reference
gave (after some manipulation) ﬁF = 0.686(6‘IF =
0.0220) and GF = 0.239(Gs = 0.0267), while the
LASL program gave "IL = 0. S(GﬁL = 0.0221) and GL =
0.237(85 = 0.02%1) directly. The discrepancies
clearly are small and attributeble to differing
degrees of precilsion in the performance of the two
methods of calculation,

Example 2. This is an example of & situation
in which the values of Xy cannot be prl:gselected.

A tebulation of such a set of results™ is given in
Table II, The data come from an experiment con-
cerned with determining the penetration character-
istics of a projectile, The penetrating velocities
were assumed to be normally distributed as in
model (1').

Table II

Velocities and Conditions of Impact of a
Given Projectile Fired at a Given Armour Plate

Velocity (f/s) Condition of Impect
2433 Non-Penetration (n1 = 1Lr = 0)
2435 Non-Penetration (n2 = 1,r, = 0)
2415 Non-Penetration (n5 = l,r3 = 0)
2453 Penetration (ny, = 1,1y = 0)
2423 Penetration (ns = .'L,r5 = 0)

Using initial estimates of u, = 2435 and 9 =
17, the reported results were ﬁG = 21451.6(@1 =
G

10.7) and o, = 15.0(83 = 12,5) with an estimated
G

G

covariance of 50,8. The LASL program gave ﬁL =

2431.6(5. = 10.6) and o = 14.9(5~ = 12.0) with
B, L o,

an estimated covariance of 46,6,

Example 3. The up-and-down method” is illus-
trated with a set of "mocked-up" data based on s
semple of size 60 from a normal distribution with
t =13 and g =0,2, The observations are repeated
in Table III, where the term "normalized height" is
used to indicate theat these data might have come
from an experiment in which explosives are dropped

3

certain distances and a response is an explosion.

Table IIT

Demonstration "Data"

Normalized Number of
Height Explosions Non-Explosions
2.0 1 0
1.7 10 0
1.k 18 9
1.1 2 18
0.8 2

The results vere il = 1.52(aﬁ = 0,035) and
D
?’D = 0.17(?:% = 0,039), while the LASL program gave
D

ap = 1.52(oaL = 0,035) and oy, = 0.17(08L = 0,038).

6. Biveriate Examples.

The procedures outlined in Sections 2 and 3
above are not limited to data obtained from simple
treatments., A treatment may be a combination of
gsimple treatments, such as two kinds of poison ap-



plied as a mixture, or dropping distance » humidity,
and temperature used in testing sensitivity of ex-
plosives. To apply these procedures, it is neces-
sary to arrive at a formulation involving the com-
bination of treatments that is similar to Eq. (1).
Thus, one must be able to write

i=1, ..., n (lo)

where e(pi) is the expected value of the observed
fraction responding to the ith treatment combina-
tion, (X915 +ovy xim) is the set of m simple treat-
ment levels that compose the ith treatment combi-
nation, and (01, cees 0&{) are the parameters to be
egtimated.

Example 4, Consider a portion of the data
presented elsewhere (Ref, 11, pp. 534 - 535, Ta-
ble 2), which are given here as Table IV in a
somewhat different form, The expected value of
the fractions responding to a combination of lev-
els of the two poisons was equal to one minus the
incomplete bivariate normal distribution using the
common logarithms of the simple treatment levels;
that 1is,

logx 41 logx 12

o) =1-T  as |
- -

g(s,t)dt, (11)

2 2
1 54, AV AT AW A TN
eXpP 4 - 2 o 20l 5 o o
2(1-p)\ 2 1 2 2
and where the parameters of Eq. (10) were identi-
fied arbitrarily with those of Eg. (11) by the
pairs (al’ U'l): (02: 0'1)’ (a}: “2)’ (%: 02): and
(as, p). The estimates of the five parameters ob-

tained from a LASL least-squares analysis of the
data were {i,; = -0.9949, oy, = 0.3450, oy =

-0.8333, &, = 0.4ghg, and ;L--0.7380. (The es-

timated standard errors were, respectively, 0.0251,
0.0332, 0,0316, 0,0565, and 0,1125,) The original
procedu.re,:l'1 using the mixture data, provided an

estimate only of the correlation coefficient,

Py = -0.74, with (what appears to be) a standard
error of 0,09. Using the LASL program's results,
it was found that the weighted sum of squares was
12.17. This was not significantly different from
19 (using chi-square critical values of 8,91 and
32.87 for (2% - 5) = 19 degrees of freedom at the
0.05 level of significance). Consequently, the fit
could be considered satisfactory. The last two
columns of Table IV glve, respectively, the ob-
served and estimated proportions responding to the
treatment combinetions,

Example 5. This example is provided by a
problem involving the quest for an empirical func-
tion to describe the probability of survival of hu-
mans who had received whole-body irradietion, when
no two individuals had identical treatments. Data
were avajlable on 104 subjects who had received ra-
diation for a period of 2 weeks or longer.12 The
radiation received was measured in midline rads per
week. The observation made on each subject was
whether he was alive or dead 2 months after the
Thus, for each of the 104
subjects, there was available the triplet (ri, t
pi) where r; is the midline rads/week, t; is the
total treatment time, and Py = 0 or 1 according to
whether the subject was alive or dead 2 months af-

cessation of treatment.

i)

ter treatment. For the subjects considered, r
ranged from 0.3 to 184.8 rads/week and t
from 2 to 216 weeks,

For various reasons, it was felt that the

probability of survival could be expressed in the

i

4 ranged

form

P, = exp [w(r,) t,1, (12)

where w(r) was an unknown function of r that hed to
be determined., To accomplish this, the data were
divided into six sets according to Ty lying in the
intervels (0-20), (20-40), (40-80), (80-120), (120-
160), and (160-200), Each of the sets was fitted
to the function

with the six values of the estimates of ¢ being ap-
proximately -0,0020, -0,0023, -0,0529, -0.1751,

-0.1739, and -0,2339,
ated, respectively, with the numbers 10, 30, 60,

These numbers were associ-




Table IV

Six-Day Toxicity to Beetles (Tribolium castaneum) of Direct Sprays

Pyrethins, D.D.T., and the Two Together, in Shell 0il P31

Deposit Treatment Combination

Ingecticide (mg. /10 sq.cm,) *41 *12 et Ty Py Py
1.2 ofo w/v 2.52 0.03024 0 L8 3 0.0625 0.0642
pyrethins 3.30 0.03960 0 48 3 0.0625 0,1189
4 25 0.05100 (o] 50 9 0,1800 0.1943
5.33 0.06396 0 50 16 0. 3200 0,2819
7.15 0.08580 0 50 20 0.4000 0.4178
9,53 0.11436 0 50 30 0.6000 0.5613
12,28 0,14736 0 49 37 0.7551 0.6820
15,58 0,18696 0 50 35 0.7000 0,7802
2,0 ofo w/v 2,45 0 0,0490 kg 8 0.1633 0.1678
D.D.T. 3.18 0 0,0636 50 8 0.1600 0.2315
b, 25 0 0.0850 50 16 0.3200 0.3158
5.48 0 0.1096 50 21 0.4200 0.3988
7.24 0 0.1448 50 25 0.5000 0.4952
9.54 o 0.1908 50 28 0.5600 0.5910
12.36 o] 0.2h72 50 35 0, 7000 0.6763
15.54 0 0.3108 50 37 0, 7400 0, 7548
1.2 o/o 2.7k 0.02964 0. 04k 50 1k 0.2800 0.2307
pyrethins 3.20 0.03840 0. 0640 kg 18 0.367> 0, 3442
+ 4,10 0,04920 0.0820 50 22 0.44%00 0.4839
2.0 ofo 5.34 0, 06408 0.1068 50 36 0.7200 0.6553
D.D.T. 7.11 0.08532 0.1k22 50 ko 0.8400 0.8287
9.60 0.11520 0,1920 50 45 0.9000 0. 945k
12,45 0.14940 0,2490 50 50 1, 0000 0.9867
15,65 0.18780 0.3130 50 50 1.0000 0.9974

100, 140, and 180 which were the midpoints of the

A plot of these
pairs of numbers on log-log graph paper revealed
that a straight line connected them reasonably well.
Consequently, it was decided that w(r) might have
the form

arbitrary grouping intervals.

(6,
w(r) = BT . (1)
Combining Eqs. (12) and {14), the function
P, = exp Blri ty (15)

was obtained, The entire set of 104 cbservetions
was submitted to the LASL program with the final
estimates (and fta.ndu‘d errors) of él = .0,0002h1
(0.000203) and B, = 1.36 (0.21). The welghted sum
of squares, defined by

104

i=1

(16)

where l/Wi = Pi(l - f’i) since n, = 1 for all cases,
hed a value of 122,0, Comparing this at the 0,05
level of significance with the expected velue of a
chi-square variable with 102 degrees of freedom, S
Hence, the fit
was congsidered satisfactory for these data.

was found not suspiciously large.

7. Comments,

One immediate conclusion that may be reached
is that a reasonably gereral least-squares computer
program can replace several specialized quantal
enalysis progrems, as long as the general program
has the capability of convenient specification of
the function being fitted. It must alsoc allow the
modification of welghts at appropriate stages of
the computation, However, it is not necessary to
specify the algorithm by which the least-squares
solution is attained. For instance, it is not nec-
essarily required that the derivatives be analyti-
cally computed. Indeed, direct search methods of-
ten are successful when conventional procedures
fail.




It is worth noting that nothing in the preced-
ing development requires ny to be larger than one.
Thus, levels at which only a single item is tested
may be incorporated into the computation, However,
experimental date, in order to provide unique pa-
rameter estimates, must exhibit at least one
"cross-over" level; i,e., there must be at least
ore level of stimulus at which there is a lack of
response which is higher than the lowest level at
which resgponse does occur.

The relationship between maximum likelihood
and least-squares estimates has been noted previ-

ously. 15

However, that discussion seems somewhat
clouded by the requirement that the function be
linear in the parameters and by the introduction of
several forms of functions to be minimized, all of

which are given the generic name X2_
MINIMUM CHI-SQUARE ESTmATION*
1. A Problem, .
Suppose the dete (Ref. 14, p. 439, a portion
of Table 30.4,2) appearing in Table V are given,
Table V

Distribution of Mean Temperatures for June
in Stockholm, 1841-1940

Degrees Years
Celsius Observed
-12.4 10
12.5-12,9 12
13.0-13.4 9
13.5-13.9 ) 10
1, 0-1k. k4 19
14.5-1k,9 10
15,0-15.4 9
15.5-15.9 6
16,0-16.4 7
16.5- 8

It is desired to estimate the mean and stan-
derd deviation of the distribution and to test the
hypothesis that the data are "normally distributed.”

*Based on "Minimum Chi-Square Estimation with Non-
Linear-Ieast Squares Procedures," by Roger H.
Moore, presented at the Spring Meeting of the Rio
Grende Chapter of the Associetion for Computing
Machinery, Cloudcroft, New Mexico, April 21-22,

1966.

2, Usual Solution.

It may be determined (Ref. 14, p. L4LUO) that
v, ...the exact class intervals are 12.45, 12.95,
etc." Hence, one may estimate the parameters by
the standard method (See Ref. 15, pp. 14-27) of
getting up a frequency distribution, coding the
midpoints of the intervals, and correcting the
coded estimates to obtain the final estimates. Af-
ter application of this method to the data of Table
V, Table VI is obtained,

Teble VI

Computing Layout of Deata in Table V

Mid-point Coded

of Intervel Score Frequency 5
Xq Xy £, £,%, £,%5
11.70 -5 0 0 0
12,20 ke 10 -ko 160
12,70 -3 12 -36 108
13,20 -2 9 -18 36
13.70 -1 10 -10 10
1k.20 0 19 0 0
1k.70 1 10 10 10
15.20 2 9 18 36
15.70 3 6 18 54
16,20 ih 7 28 112
16.70 5 8 Lo 200
17.20 6 0 0 o

- Tot8Ll s.eevcecsccas 100 10 726

The additional interval at either end is introduced
to conform to the statement (Ref. 14, p, 438) that
"We first assume that the grouping haes been ar-
ranged such that the two extreme classes do not
contain any observed values." Thus, £, = f12 = 0,
Ietting 1' = 0,50 be the interval width and
Xg = 14,20 correspond to x = O, this layout pro-

vides for the following computations:

N = 2f, = 100
X = (Zfixi)/N a 10/100 = 0.10
X = 1'% + Xg = (0,50)(0.20) + 14,20 = 14,25

52 = zfixf - szixi)e/N]/(N - 1)

= [726 - (10)2/1001/99



= 725/99 = 7.3232
B, = 2.706
5y = i's = (0,50) (2.706) = 1.353.

It must be emphasized at this point that the
parameters should be estimated from the ungrouped
data if they are available,

The question of whether the data have come
from a normal distribution may be answered by per-
forming & goodness-of -fit test (Ref. 15, pp. 226-
227). This is accomplished by compering the ob-
served frequencies with those obteined theoreti-
cally under the assumption of normelity, Table VII
is then established.

Table VII

Computational Layout for Goodness-of -Fit
of Data in Table V

Upper o % Theoretical Observed (£ -Fi)2

Endpoint "1 ~ © Frequency Frequency T

E, 8y F, £, i
12,5 -1.330 9.18 10 0.07
12,95 -0.961  7.65 12 2,47
13,45 -0.59L 10.90 9 0.33
13,95 -0.222 13.48 10 0.90
b ks 0,148 1hk.67 19 1.28
14,95 0.517 13.87 10 1.08
15,45 0.887 11.50 9 0,54
15.95 1,256 8.30 6 0.64
16,45 1.626 5.25 7 0.58
® © 5.20 _8 1.51
100,00 100 9.40

The statistic obtained by summing the last
column of the table is to be compared with a crit-
ical value obtained from & chi-square distribution
with (10 - 3) = 7 degrees of freedom since there
are 10 intervals, nine of which have independent
probabilities associated with them, and two param-
eters have been estimated from the data, For ex-
ample, if the 5% level of significance is chosen,
the eritical value is 14.07. Since 9.40 is less
than 14,07, the hypothesis of normality is ac-
cepted.

Thus, the problem posed earlier is answered.
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However, some questions remain: Would the con-
clusion be the same if the ungrouped parameter es-
timates had been used? Suppose 100 (instead of 99)
had been used in the computation of sx? Should
Sheppard's corrections (Ref. 14, p, 438) have been
applied? Are these estimates "best"?

3, Minimum Chi-Square Solution.

Often, it is not possible to recover the raw
data, and one must rely on grouped deta. Some-
times, as in sorting or sieving operatlons, there
is no chance at all to use individual measurements.
How, then, may estimates be cbtained?

Ore way of doing this is to obtain values,
say X* and g%, that minimize the sum of the entries
in the final column of Table VII. These are called
minimum chi-square estimates and are detailed else-
where (Ref. 14, pp. 42h-hli1),

To obtain these estimates, one must minimize

[f - F.(u a]2

2 - }%; g = Fil 0

Fi(u, 0)

by finding the values of u and ¢ for which axe/ap.
and ax2/au are both zero. These values may be
denoted by X* and g*,

That solving such equations is not necessarily
a simple task may be demonstrated by noting, for
instance, that
)2 OF
$ .

N (£, - Fp)  (fy - Fy
7 '2%? 2 FL Fi

4, The least-Squares Approach.

The way out of this dilemma lies in applying
the observation (Ref. 14, p. 425) that it can be
", ..shown for lerge N the influence of the second
term within the brackets becomes negligible," Then
it becomes a matter of solving the simpler system

3 (£, - F,) OF,

Na (£, - Fy) OF
e

for p and 0. This technique is called (Ref. 15,
p. 426) the "modified X minimum method."
It happens that these are precisely the kind




of equations that must be solved in a general least-
squares problem when 1t is recognized that the
welights in such a problem mey be regarded as the
reciprocals of the function being fitted.
this, congider a simple two-parameter least-squares
problem where the function to be minimized is

To see

B, By = Ziwi [v, - etxs 80 8] %

The normal equations are of the form

o .

J

da(x.5 B, B)
2w —igt2 [vs - a5 2y Be)] =9
i 3

=1, 2

That these heve the same form as those of the mini-

mun chi-square method mey be seen by using £, for

yy» Fy for g(xi; Bl, Be), and l/Fi for LI 'jI;he
trick lies in having a nonlinear least-squares com-
puter program that allows one to modify the weights
et each iteration, One such program containing
this provision is a.va.ilable.l

When this epproach is applied to the date in
Table V, the estimates X* = 14,23 and s* = 1.512

are obtained and Table VIII mey be derived,

Table VIII

Results of Applying Modified Minimum Chi-Square
to Data in Teble V

2
Upper F £ Sfé;ﬁ_fll'
Endpoint i _i i

12,45 11.91 10 0.31
12,95 7.89 12 2.15
13,45 10,41 9 0.19
13,95 12,34 10 O,k
1l ks 13.13 19 2,63
14,95 12.53 10 0.51
15,45 10.73 9 0.28
15.95 8.2 6 0.61
16,45 5.68 7 0.30
o _7.15 _8 0.10
100,01 100 7.52

It will be noted that the sum of the entries
in the lest column is considerably smeller then
that obtained using the frequency distribution es-
timates and shown in Table VII. Indeed, this is
slightly better than the )(2 = 7.86, along with a
mean of 14.23 and & standard deviation of 1.57k,
reported with the original data (Ref. 1%, p. 439).

5. Conclusion,

When a general leest-squares program is avail-
able, it is suggested that minimum chi-square es-
timates are as easy to obtain as any other type.
This removes the problem of subjectively choosing
the proper computing procedure when date are already
grouped. Indeed, there are asome sets of date which
demand this kind of treatment because individual
measurements simply are not available, In addition,
the minimum chi-square method provides the proper
statistic for testing the hypothesis of normelity
in an unequivocel manner that gives every consider-
ation to the hypothesis itself, Finelly, the meth-
od may be applied to eany form of the F
required.

N that may be

It is satisfactory even when F, and its

i
partials are not expressible in closed form end

must be obtained numerically.
DIFFERENTIAL EQUATIONS®
1. A Problem,

To avoid circumlocution, consider the follow-
ing: The time when & shock wave in Plexiglas passes
Teble IX displays a
set of date obtained from such an experiment.

a8 known distance is measured.

Table IX

Measured Velues of Distance vs Time
for & Shock Wave in Plexigles

t(ugec) x(um)
0.720 5.105
1,468 10,185
2,235 15.263
3.031 20,350
3.846 25,4k

¥Although they clearly are applicable to the situ-
ations, the methods discussed in this section msake
use of an example and deta kindly supplied by B.
Hayes, Group GMX-8, Los Alamos Scientific Labore-
tory.




It is desired to determine the instentaneous veloc-
ity for any distance traversed by the shock wave.

For any one-dimensional weve propageting in
the positive x direction, one can write

Q =

% * flve=o0 (17
ag & solution to the wave equation, where G is the
amplitude function and f(t) is the decrement. Spe-
cializing to the shock veloeity, Eq. (17) can be
written

du

T £f(t)u = 0 (18)

with w = dx/dt the velocity of the wave front. A
solution for expression (18) is

-jt £ () dw
%
u = ne F) (19)

and the problem is to determine the function

z
- ‘[to £(w)dw

*x = x(t) = ﬂft e dz (20)
t0

from a given tabular set of x's and corresponding
t's. The essumption that the function is well-
behaved in being continuous and in having continu-

ous derivatives is required.,

2. An "Easy" Solution,

One approach is to assume that £(t) is a con-
stent and that t; = O, so that x(0) = t(0) = 0.
Then the velocity expression can be written

-ot

u=ue (21)
where Uy =T = dx/dt « This results in the
t = 0
equation
u
x = a_o (1-e %, (22)

For & given set of data, then, it is & simple mat-
ter to apply nonlinear least-squares methods and
obtain estimates of u, and @, Applied to the data

0

in Teble IX and using initiel estimates for Uq and
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a of 7.0 and 0.07, respectively, this method gives
finel estimates of G, = 7.15 and & = 0,045 from
which the minimized sum of squared deviationa (ob-
served minue calculated distances) is found to be
1.688 x 107,

3. A More Generel Solution.

There are occasions in which the function f£(t)
must take on forms other than the constent. For
example, if f£(t) = @ + Bt, the nonlinear contribu-
tion to the shock cen be assessed., That is, if £ =
0, normel attenuation occurs as the shock wave
passes through the Plexiglas. If B ¥ 0, the value
of B is en indication of the amount of distortion
as the shock wave propagates. These considerations
lead to the modification of Eq. (20) into

2
x = x(t) = JZe-az_ﬁz dz, (23)

an expression that is not integrable in closed form.
However, the conditions imposed earlier allow dif-
ferentiation under the integral sign (See Reference
16, pp. 167-169). It is therefore a simple matter
to treat the problem as a least-squares problem,
using same numerical integration scheme to obtain
the quantities required to perform the fit.

The foregoing discussion was based on the as-
sumption that time is the independent variable and
that distance is the dependent variable., There are
reasons for making the reverse assumptions: (1)
velocity at some specified distance, rather then
time, is usuelly required; and (2) expansion of the
exponential function for hand computetions then re-
sults in all terms being positive, rather then
alternately positive and negative, thereby aiding
certain calculations., Thus, Eq. (18) cen be re-
arranged to read

M + g(x) =0 (21

ax
with the result that

Fz glw)aw

MY
L [
t = - e dz,

% o

vhere u = dx/dt and u, = ax/dat .
x =t =0




To illustrate: The assumption that g(x) = Q,
leads to the final form

b= = (* .1 (25)

%
to be fitted.
Similarly, the assumption that g(x) = a + Bx,
leads to

t = u_l J‘ z + 52 . (26)
Using initial estimates of Uy a, and B of 7.15,
0.0415, and 0,0, respectively, final least-squares
estimates were G, = 7.22, & = 0.00816, and B =
0.0000782. Although f is smell, its estimated
standard deviation, 0,0000305, is such that accep-
tance of the hypothesis that B = O is marginel at
the 10% level of significance. Certainly, further
experimentation is indicated by this result for one
to be completely comfortable with acceptance of
that hypothesis,

L4, Remarks.

Experimental data are often obtained for which
the only known relation among the veriables is
some differential equation. When the equation can

be reduced to the form
F(dy/dx: X3 01) 02; see) %) =0, (27)

the function to be fitted can be written, in its
most generel form, a&s

ue(x; Q)

¥y = £{t, x; @) dt + const. (28)

v, (x5 9
In expressions (27) and (28), @ denotes the vector
(al, Oy eees Oﬁ{) whose elements are the parameters

to be estimated. Even though exact integration mey
be impossible, the problem yields to straight-
forward nonlinear least-squares methods which em-
ploy numerical integration techniques to evaluate
the function (28) and its derivatives.
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